
Papaya
Finance
Security
Audit Report

Apr 16, 2024

Contents

1

2

2

3

4

6

8

24

24

Contents

Executive Summary

Project Overview

Audit Scope

Audit Methodology

Findings Summary

Findings

Conclusion

Disclaimer

1

Executive Summary

Title Description

Client Papaya Finance

Project Papaya Protocol

Platform Ethereum

Language Solidity

Repository https://github.com/papaya-metaverse/Payout

Initial
commit

c03732d4471894a630f4b709db31739ae5ee71d3,
916cfb5231960a7ecf863e97dab78f6705a3a62b,
452be1c32faccd6e4bcd0b79e792051704888a09,
70fc169ba958e4707f0fba6fc0dd30013003ea1e

Final
commit 2848ebe66900134b73336bc6b1ddf60566d256bb

Timeline March 22 2023 - April 16 2024

Project Overview

The Papaya Metaverse platform o�ers subscription services with financial transactions that are

conducted using cryptocurrencies.

2

https://github.com/papaya-metaverse/Payout

Audit Scope

File Link

UserLib.sol UserLib.sol

Papaya.sol Papaya.sol

BySig.sol BySig.sol

3

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/library/UserLib.sol
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol
https://github.com/1inch/solidity-utils/blob/bf92be898262c409a0024997d973d55400f5af60/contracts/BySig.sol

Audit Methodology

General Code Assessment
The code is reviewed for clarity, consistency, style, and whether it follows code best practices

applicable to the particular programming language used, such as indentation, naming convention,

commented code blocks, code duplication, confusing names, irrelevant

or missing comments, etc. This part is aimed at understanding the overall code structure and protocol

architecture. Also, it seeks to learn overall system architecture and business logic and how di�erent

parts of the code are related to each other.

Code Logic Analysis
The code logic of particular functions is analyzed for correctness and e�ciency. The code is checked for

what it is intended for, the algorithms are optimal and valid, and the correct data types are used. The

external libraries are checked for relevance and correspond to the tasks they solve in the code. This

part is needed to understand the data structures used and the purposes for which they are used. At this

stage, various public checklists are applied in order to ensure that logical flaws are detected.

Entities and Dependencies Usage Analysis
The usages of various entities defined in the code are analyzed. This includes both: internal usage from

other parts of the code as well as possible dependencies and integration usage. This part aims to

understand and spot overall system architecture flaws and bugs in integrations with other protocols.

Access Control Analysis
Access control measures are analyzed for those entities that can be accessed from outside. This part

focuses on understanding user roles and permissions, as well as which assets should be protected and

how.

Use of checklists and auditor tools
Auditors can perform a more thorough check by using multiple public checklists to look at the code

from di�erent angles. Static analysis tools (Slither) help identify simple errors and highlight potentially

hazardous areas. While using Echidna for fuzz testing will speed up the testing of many invariants, if

necessary.

4

Vulnerabilities
The audit is directed at identifying possible vulnerabilities in the project's code. The result of the audit is

a report with a list of detected vulnerabilities ranked by severity level:

Severity Description

Critical Vulnerabilities leading to the theft of assets, blocking access to funds, or any other
loss of funds.

High Vulnerabilities that cause the contract to fail and that can only be fixed b y
modifying or completely replacing the contract code.

Medium Vulnerabilities breaking the intended contract logic but without loss of fun ds and
need for contract replacement.

Low Minor bugs that can be taken into account in order to improve the overall qu ality
of the code

After the stage of bug fixing by the Customer, the findings can be assigned t he following statuses:

Status Description

Fixed Recommended fixes have been made to the project code and no longer a�ect
it s security.

Acknowledged The Customer took into account the finding. However, the recommendations
wer e not implemented since they did not a�ect the project's safety.

5

Findings Summary

Severity # of Findings

Critical 1

High 0

Medium 8

Low 7

ID Severity Title Status

C-1 Critical A user can drain the protocol balance Fixed

M-1 Medium The liquidator may lose funds Acknowledged

M-2 Medium Authors may lose their income funds Acknowledged

M-3 Medium Mismatch of donations and awards Acknowledged

M-4 Medium The reward for the liquidator may be lower than the
cost of gas for liquidation Acknowledged

M-5 Medium A user can liquidate themselves and lose the assets Fixed

M-6 Medium The user balance may change due to unchecked
casts Fixed

M-7 Medium User can't Unsubscribe or Liquidate Acknowledged

M-8 Medium The rescueFunds function compares balances
incorrectly Fixed

L-1 Low Subscribe to themselves Fixed

L-2 Low The Chainlink's latestRoundData can return stale
results Acknowledged

L-3 Low The _encodeRates function may return the same
result with di�erent inputs Acknowledged

L-4 Low Denial of the ChainLink Oracle service Acknowledged

L-5 Low Fee Tokens Acknowledged

L-6 Low Use Ownable2Step instead of Ownable Acknowledged

6

L-7 Low Null address checks are missing Acknowledged

7

Findings

Critical

C-1 Critical A user can drain the protocol balance Fixed

Description

Papaya.sol#L180-L199

A user can drain the protocol balance by setting outgoingRate and incomeRate to a negative

number.

A user can subscribe it to another user with type(uint96).max.

So, the rates are -1, and the rate can be lower than -1 if an attacker uses a value smaller than

type(uint96).max

Recommendation

We recommend checking the subscriptionRate parameter in the subscribe function, which is

not higher than type(int96).max.

Client's commentary

Fixed in 916cfb52

8

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L180-L199
https://github.com/papaya-metaverse/Payout/commit/916cfb5231960a7ecf863e97dab78f6705a3a62b

High

Not Found

Medium

M-1 Medium The liquidator may lose funds Acknowledged

Description

Papaya.sol#L217

UserLib.sol#L73-L77

When the user's balance decreases significantly and becomes negative, the liquidator may lose

their funds due to the drainBalance implementation.

Because of:

 balance = user.balance;

 liquidator.balance += balance;

Here, the liquidator receives the user's balance, but if the user's balance is negative, it decreases the

liquidator's balance.

Recommendation

We recommend adding only a positive balance to the liquidator.

Client's commentary

If the liquidator loses his funds during the liquidation process, he can request a refund.

9

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L217
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/library/UserLib.sol#L73-L77

M-2 Medium Authors may lose their income funds Acknowledged

Description

With the current implementation, the following case is possible:

One author has wealthy users and another one has poor subscribers.

Poor subscribers don't transfer funds to their balance; their balances decrease, but no one

liquidates them.

Next, wealthy subscribers donate to the first author, but since no one liquidates subscribers of the

second author, the second author can receive funds from the first author.

Let's consider the next steps:

1. Two authors: a1, a2;

2. Two subscribers: s1, s2, both have 100 coins;

3. s1 subscribes to a1 with rate=10;

4. s2 subscribes to a2 with rate=10;

5. after 10 seconds, both of them donate 100 coins (10 * 10) to a1 and a2;

6. next, s2 transfers the next 100 coins to the protocol;

7. s1 balance = 0, s2 balance = 100;

8. after 10 seconds, both of them donate another 100 coins (10 * 10) to a1 and a2;

9. s1 balance = -100, s2 balance = 0, a1 balance = 200, a2 balance = 200, contact balance =

300;

10. Next, a1 withdraws all their funds (200), and from this moment, a2 can withdraw only 100

instead of 200;

Recommendation

We recommend having a separate storage for each author.

Client's commentary

In the described case, the user will be liquidated. A negative balance is required for the protocol to

function properly. This ensures that if the user was not liquidated, it can be done later.

10

M-3 Medium Mismatch of donations and awards Acknowledged

Description

When a user's balance becomes negative, the author's balance grows. After the user is liquidated,

the author's balance does not change.

For example:

1. User balance = -10, rating = 1, author balance = 0;

2. After 10 seconds, balance = -20, rate = 1, author balance = 10;

3. If someone now eliminates this user, the author's balance will still be 10;

Recommendation

We recommend having a separate repository for each author.

Client's commentary

In the described case, the user will be liquidated.

11

M-4 Medium The reward for the liquidator may be lower than the
cost of gas for liquidation Acknowledged

Description

Papaya.sol#L210

_liquidationThreshold(account) will return the amount of native tokens spent as gas to

"unfollow" from authors that the account follows.

But there is a chance that the reward that the liquidator will receive will be less than what the

liquidator spent on the TX execution.

Recommendation

We recommend adding setter functions for the APPROX_LIQUIDATE_GAS and

APPROX_SUBSCRIPTION_GAS params for the owner only.

Client's commentary

If the liquidator loses his funds during the liquidation process, he can request a refund.

12

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L210

M-5 Medium A user can liquidate themselves and lose the assets Fixed

Description

Papaya.sol#L208

A user can liquidate themselves and lose the assets (UserLib.sol#L73):

liquidator.balance += balance;

user.balance = 0;

Recommendation

We recommend disallowing calling liquidate on the same address as _msgSender().

Client's commentary

Fixed in 916cfb52

13

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L208
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/library/UserLib.sol#L73
https://github.com/papaya-metaverse/Payout/commit/916cfb5231960a7ecf863e97dab78f6705a3a62b

M-6 Medium The user balance may change due to unchecked casts Fixed

Description

Since all transfer-related functions accept uint256 as the amount, but the user balance is stored

as int256 (UserLib.sol#L15),

the decreaseBalance function (UserLib.sol#L66)

and the increaseBalance function (UserLib.sol#L62)

perform casts of the amount from uint256 to int256 to manipulate the user balances. A hacker

can call the pay function (Papaya.sol#L176)

with amount set to 2 ** 256 - X to move the X token amount from any user participating in the

contract.

Recommendation

We recommend checking values after the cast.

Client's commentary

Fixed in 916cfb52

14

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/library/UserLib.sol#L15
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/library/UserLib.sol#L66
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/library/UserLib.sol#L62
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L176
https://github.com/papaya-metaverse/Payout/commit/916cfb5231960a7ecf863e97dab78f6705a3a62b

M-7 Medium User can't Unsubscribe or Liquidate Acknowledged

Description

Papaya.sol#L249-L258

Papaya.sol#L215

Papaya.sol#L205

The unsubscribe and liquidate functions might fail due to the author or the admin Threshold

level break.

This might happen in the _unsubscribeEffects function.

When the income rate decreases, it's additionally checks the Threshold level:

users[author].decreaseIncomeRate(..., _liquidationThreshold(author));

users[admin].decreaseIncomeRate(..., _liquidationThreshold(admin));

That transaction is reverted if the author' or admin' balance is less than

_liquidationThreshold.

A possible case:

1. user1 subscribes to user2 to pay them 50 tokens/second;

2. user2 subscribes to user1 to pay them 500 tokens/second;

3. Wait a bit;

4. user1 wants to unsubscribe, so they call the unsubscribe function, which calls the

decreaseIncomeRate function;

5. In decreaseIncomeRate for user2, the income rate decreases to 0, but their outgoing rate

is still 500;

6. Therefore, the transaction will be reverted.

Also, if any of the subscriptions cannot be canceled, the liquidation function will not be fully

executed.

Recommendation

We recommend changing the synchronization mechanism for income rates.

Client's commentary

In the current implementation, a transfer will be made to one of the blocking accounts, and all

participants will be liquidated.

15

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L249-L258
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L215
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L205

M-8 Medium The rescueFunds function compares balances
incorrectly Fixed

Description

Papaya.sol#L99

The totalSupply variable has 18 decimals, but the balanceOf function call may return a value

with a di�erent number of decimals.

Recommendation

We recommend fixing the rescueFunds function.

Client's commentary

Fixed in 2848ebe6

16

https://github.com/papaya-metaverse/Payout/blob/452be1c32faccd6e4bcd0b79e792051704888a09/contracts/Papaya.sol#L99
https://github.com/papaya-metaverse/Papaya/commit/2848ebe66900134b73336bc6b1ddf60566d256bb

Low

L-1 Low Subscribe to themselves Fixed

Description

A user can subscribe to themselves.

Recommendation

We recommend disallowing users from subscribing to themselves.

Client's commentary

Fixed in 2848ebe6

17

https://github.com/papaya-metaverse/Payout/commit/2848ebe66900134b73336bc6b1ddf60566d256bb

L-2 Low The Chainlink's latestRoundData can return stale
results Acknowledged

Description

Papaya.sol#L224-L225

The ChainlinkAdapter accesses the Chainlink oracle, receiving lateRoundData(). Suppose

Chainlink has a problem launching a new round and moving to consensus on a new scenario for an

Oracle user. In that case, this contract may continue to use virtual or uncorrected data.

Recommendation

We recommend adding checks for the Chainlink (for TOKEN_PRICE_FEED and COIN_PRICE_FEED):

18

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L224-L225

L-3 Low The _encodeRates function may return the same result
with di�erent inputs Acknowledged

Description

The projectId is uint256 as an input, but in the function this uint256 should fit in uint64 slot(256-

96-96 = 64)

So, if projectId is type(uint64).max+1or projectId == 0 and other values are 1, the

_encodeRates function will return the same result.

// (1,1,type(uint64).max+1)

_encodeRates(1,1,18446744073709551616) = _encodeRates(1,1,0)

Recommendation

We recommend adding additional checks for inputs or setting projectId as a uint64 value.

19

L-4 Low Denial of the ChainLink Oracle service Acknowledged

Description

ChainLink oracles can block access to price feeds, which will render the contract functionality

unavailable since the _liquidationThreshold method directly uses these feeds

(Papaya.sol#L224). Thus, any method which calls _liquidationThreshold will also become

unavailable (withdraw, withdrawTo, pay, subscribe, unsubscribe, liquidate)

Recommendation

We recommend using a try {} catch {} structure when working with the oracles to prevent

denial of service.

20

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L224

L-5 Low Fee Tokens Acknowledged

Description

Some ERC20 tokens charge a transaction fee for every transfer (for example, USDT is a fee token

with a null commission now). Thus, the amount of the tokens received using transferFrom may

di�er from the transfer amount.

Papaya.sol#L157

Papaya.sol#L159

Papaya.sol#L173

Recommendation

We recommend checking token balances before and after transferFrom.

21

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L157
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L159
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L173

L-6 Low Use Ownable2Step instead of Ownable Acknowledged

Description

Papaya.sol#L8

The transferOwnership function is used to change ownership from Ownable.sol. The owner may

accidentally specify a non-active address and lose access. Ownable2Step.sol is more secure due

to a 2-stage ownership transfer.

Recommendation

We recommend using the Ownable2Step contract from OZ (Ownable2Step.sol) instead.

Client's commentary

The multisig contract will be the owner of the protocol.

22

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L8
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

L-7 Low Null address checks are missing Acknowledged

Description

Adding null address checks can prevent users from accidentally losing funds.

Papaya.sol#L149

Papaya.sol#L167

Papaya.sol#L176

Papaya.sol#L180

Recommendation

We recommend adding null address checks for addresses.

23

https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L149
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L167
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L176
https://github.com/papaya-metaverse/Payout/blob/c03732d4471894a630f4b709db31739ae5ee71d3/contracts/Papaya.sol#L180

Conclusion

During the audit process 1 CRITICAL, 8 MEDIUM and 7 LOW severity findings have been spotted.

Disclaimer

The Stronghold audit makes no statements or warranties about the utility of the code, the safety of the

code, the suitability of the business model, investment advice, endorsement of the platform or its

products, the regulatory regime for the business model, or any other statements about the fitness of the

contracts to purpose, or their bug-free status. The audit documentation is for discussion purposes only.

24

